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a b s t r a c t

Nitrides of high-entropy alloys (TiHfZrNbVTa)N were fabricated using cathodic-vacuum-arc-vapor-
deposition method. Morphology and topology of the surface of the coatings, roughness, elemental and
phase composition, microstructure and mechanical properties were investigated. Dependence of depo-
sition parameters on surface morphology and elemental composition was demonstrated. Influence of the
heavy negative charged Au� ions implantation on phase structure, microstructure and hardness of
nitride (TiHfZrNbVTa)N coatings was investigated.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

New classes of high-entropy alloys, which consist of at least 5
main elements with corresponding atomic concentrations
5÷35 at.%, are under great interest in modern material science
[1e3]. One-phase stable substitutional solid solution with FCC or
BCC lattice is usually formed in such high-entropy alloys, and this is
the reason for further investigations. This solid solution is either
thermodynamically stable or high-strength [4e15]. Formation of
nitrides and carbides from high-entropy alloys is also an actual task
of modern material science, because such materials have much
more higher wear, corrosion and oxidation resistance, higher
hardness and plasticity in comparison with pure high-entropy al-
loys [16e24]. It is also very important to explore the limits of
resistance of high-entropy alloys nitrides to implantation by high-
energy atoms. For this purpose, we have selected negative Au�

ions (with 1 � 1017 cm�2 dose and 60 keV kinetic energy), because
they are easier to identify using RBS or PIXE methods of analysis,
and such components of the coatings as Ti, Zr, Hf, Nb and Ta do not
react with gold to form intermetallics [25e31].
2. Experimental details

Cathodes from high entropy alloys of the Ti-Zr-Hf-V-Nb-Ta
system were produced by vacuumearc melting in the atmo-
sphere of high purity argon using a nonconsumable electrode into a
water-cooled copper vessel. To fabricate a homogeneous compo-
sition of the alloy, the ingots were 6e7 times remelted.

Nitride coatings were deposited by vacuumearc evaporation of
a cathode [32e35] in a Bulat-3T-M device [36]. Deposition pa-
rameters and elemental composition of cathode and nitride coat-
ings are presented in Table 1, where Ia e arc current, If e focusing
current, Ub e bias voltage, P e pressure in the deposition chamber.
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Table 1
Deposition parameters and concentration of nitride coatings (TiZrHfVNbTa)N (1e7) and cathode TiZrHfVNbTa (8).

Series, no. Ia, A If, А Ub, V P, Torr Concentration, at.%

N Ti Zr Hf V Nb Ta Au

1 110 0.4 �150 3 � 10�3 54 7.03 8.52 11.30 5.02 9.93 4.20 2.2
2 110 0.4 �150 3 � 10�4 46 9.04 9.80 12.81 5.60 12.13 4.62 2.1
3 110 0.4 �150 7 � 10�4 53 9.72 8.44 9.42 6.54 8.1 4.78
4 95 0.5 �70 7 � 10�4 36 16.60 16.85 8.79 6.95 9.92 4.89
5 95 0.5 �70 4 � 10�3 55 10.76 7.71 8.06 5.85 8.38 4.24
6 100 0.45 �70 5.2 � 10�3 55 6.96 8.42 9.33 6.23 7.82 4.04
7 95 0.5 �70 0.5 � 10�4 22 14.65 15.15 15.35 9.75 13.75 7.25
8 e e e e e 21.52 18.77 15.5 10.2 18.2 15.81
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Impulse mode of deposition was selected to increase the energy of
ion-plasma flow, improve adhesion of deposited coatings to sub-
strate, and to obtain more dispersive structure of coatings [37]. A
570 Grade 36 steel disks with 45 mm diameter and 4 mm thickness
were used as substrates. Thickness of deposited coatings was
evaluated using scanning electron microscopy on cross-sections,
and it was 5.6÷5.9 mm. Analysis of elemental composition of the
coatings showed, that increasing of working gas pressure from
Fig. 1. Integral PIXE spectrum, taken from samples from Series 1 (a
3 � 10�4 до 5.2 � 10�3 Torr leads to significant increasing of ni-
trogen concentration, and decreasing of Ti, Nb and V. It can be
explained by resputtering of heavy atoms by more intense plasma
flow during deposition. Also, additional analysis of coating using
RBS and PIXE allowed to define concentration of Au in the
implanted series. It was approximately equal to 2.1 at.%.

The structure and phase composition of nitride coatings were
analyzed using X-ray diffraction in Cu-Ka radiation (DRON 3M), and
) and 2 (b) upon irradiation by a proton microbeam (1.4 MeV).



Fig. 2. PIXE maps of elements distribution on the coating's surface, Series 2.
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Cr-Ka radiation (RINT-2500 V, Japan). Working values of voltage
and current were 40 kV and 300 mA, respectively. The measure-
ments were done under 3�, 10�, 30� for the series in the initial state
(as deposited state), and under 2� for the series after ion implan-
tation. It was done in order to decrease the thickness of analyzed
layer, as well as to analyze the implanted layer more precisely.

Elemental composition was investigated using energy-
dispersive spectroscopy (SEM with EDX). For this purpose EDX
analysis and ToF-SIMS analysis (ULVAC-PHI TRIFT V nanoTOF,
Physical Electronics, Inc., Japan) were used.

Morphology of the coating's surface was studied using scanning
electronmicroscopy (SEM)methods. Therefore, JEOL-7000F (Japan)
and scanning probe microscope SPI 3800N, Seiko Instruments Inc,
USA, were used.

In depth elemental analysis was performed by Rutherford
backscattering spectroscopy (RBS) using Heþ ions with an energy of
Fig. 3. Distribution of elements in the surface layer of the sample from Series 2, based
on RBS measurements.
1 MeV (the scattering angle q ¼ 170� upon the normal incidence of
the probing ions onto the samples). The detector had an energy
resolution of 16 keV; the dose of helium ions was 5 mCi. The pro-
cessing of the RBS spectra and of the in depth profiles of the
elemental distribution was carried out using a standard software.

Such mechanical properties as hardness and elastic modulus
were studied using REVERTEST device (Switzerland) for micro-
hardness measurements, and Triboindentor TI-950 (HYSITRON
Inc.) for measurements of nanohardness and elastic modulus. The
hardness of coatings was studied using DM-8 hardness meter. In
order to reduce the influence of the drop fraction (roughness), as
well as to increase the accuracy of measurements, several coatings
were polished after deposition.

The investigation of the wear resistance of multicomponent
coatings was done using tribometry methods on an automated
friction machine (Tribometer, CSM Instruments). An Al2O3 ball
with a 6.0 mm diameter was used as a counterbody. Using optical
and scanning electron microscopy (NanoScan 450), the peculiar
properties of the wear of the samples and the counterbody were
investigated. The measurement of the vertical section of wear
grooves on the sample were performed using a profilometer in
four diametrically and orthogonally opposite regions, and the
mean values of groove section area as well as its depth were
determined.

High-resolution transmission electron microscopy (HRTEM)
was used to investigate microstructure of the coatings after ion
implantation in the surface layer and in the depth of the coatings.
Analysis was done using JEOL JEM-2100F with electron energy up
to 200 keV.

Ion implantation by negative Au� ions with 60 keV energy was
provided. The dose of 1017 ions/cm2 was used. Negative Au� ions
were generated by a Cs-assisted heavy-ion source of plasma-
sputter type, with a cusp magnetic field. Projective ion path of
Au� ions Rp z 34 nm.
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3. Results and discussions

3.1. Elemental composition

Fig. 1aeb shows the results of PIXE analysis for Series 1 and 2.
Studying these spectra with the integrated concentration over the
depth of analysis, we found all the elements constituting the
investigated coatings. Presence of Cr in Fig. 1b can be explained by
probably misinterpreting of obtained data, because Cr is close to V
in the periodic table (they have almost equal atomic mass).

Fig. 2 shows maps of distribution of elements on the coating's
surface for Series 1. The surface area is non-uniform, it is depleted
on Zr and Nb, microdroplets on the surface consisting predomi-
nantly of heavier elements Ta and Hf. However, as it follows from
SEM analysis, there is no strict dependence of deposition parame-
ters on elemental composition of droplet fractions. The layer of the
implanted Au� ions has an approximate concentration equal to 2.1%
due to results of EDS analysis. The thickness of the implanted layer
is approximately around 20 nm, but the lower border of the layer is
very unclear and spread, which is rather typical for implanted
layers.

In order to investigate distribution of the elements over the
depth of the coatings, RBS was conducted. The distribution of ele-
ments in the sample from Series 3 is presented on the Fig. 3. As it is
seen, some non-uniformity is observed in the sub-surface layer, up
Fig. 4. EDS microanalysis of elemental composition
to 15 nm, and afterward elements are distributed evenly on the all
analyzed depth (up to 375 nm).

Investigation of the coating's cross-section (sample from Series
3) gives more detailed information regarding coatings thickness
and its elemental composition, see Fig. 4. It is clearly seen, that
coating's thickness is around 6.5÷6.9 mm, all consistent elements
are observed.

However, in order to investigate the influence of ion implanta-
tion on microstructure and properties of investigated high-entropy
nitride coatings (TiZrHfVNbTa)N, HRTEM investigation were
provided.
3.2. Microstructure and phase composition

The XRD patterns of investigated high-entropy alloys are pre-
sented on the Fig. 5. We can see, that phase with FCC crystal lattice
was formed as the dominant crystalline phase (under higher values
of working gas pressure). As it is supported by previous in-
vestigations [38e42], this phase is rather typical for nitrides of
high-entropy alloys. Anyway, two crystalline phases are clearly
seen: FCC (dominant, as it was mentioned before), and BCC. BCC
ratio is the biggest for coatings, fabricated in low-vacuum condi-
tions. Increasing of N2 pressure lead to alignment of FCC and BCC
ratio, like 1 to 1. In addition, for crystalline structure, this ratiowas 3
to 1, respectively. The largest sizes of crystallines of FCC phase were
on cross-section of the sample from Series 3.



Fig. 5. XRD patterns of (TiZrHfVNbTa)N coatings, fabricated under different pressures
(a): Series 2 (curve 1); Series 1 (curve 2). The pattern of the Series 2 after implantation
by Au- ions under low angle analysis 2� (curve 1) and under 10� (curve 2) (b).
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17e20 nm, for samples from Series 1. On the Fig. 5b we can see the
diffraction pattern, obtained under 10� (informative layer thickness
in this case was 0.5 mm), and 2� (informative layer decreases to
70 nm). It is obviously seen, that implantation of low-energy
negative Au� ions with 1 � 1017 cm�2 dose lead to disordering of
the crystalline structure, and also lead to formation of poly-
crystalline structure without preferred orientation. Average size of
crystallines after ion implantation decreased to 5 nm (in the layer of
projective ion penetration path of 34 nm).

On the Fig. 6a the cross-section of the (TiHfZrNbVTa)N coating
(sample from Series 2), implanted by Au� ions, is demonstrated.
The surface layer with the thickness of the projective ion path
Rp z 34 nm is disordered and has mixed amorphous-
nanocrystalline structure. Lines on the Fig. 6b show the different
areas of investigations, and letters A-H specifies the points, for
which microdiffractionwas obtained. Circles, marked by D, E and H
(Fig. 6cee) are given in higher magnification for better under-
standing; distances between the planes are indicated.

Surface layer (thickness around 30 nm) is very disordered and
has amorphous-crystalline structure with dominant amorphous
structure. Nevertheless, on the border of projective Au� ion path,
we can see clear crystalline structure on the Fig. 6b. Distance be-
tween crystalline planes is equal to 0.250 nm (plane (111)), and
0.221 nm (plane (200)). These data is a little different, than ob-
tained by XRD analysis where interplanar spacing for planes (111)
and (200) is equal to 0.257 and 0.225, respectively. However, we
should also consider that the depth of informative layer for XRD is
much higher in this case e 70 nm.

In addition, borders of nanograins can be clearly seen on HRTEM
images (Fig. 6f). However, due to ballistic collisions of heavy Au�

ions, the average size of nanograins in the subsurface layer is
significantly low (0.8e1 nm). Local areas of Au were detected by
microdiffraction analysis e reflections of interplanar spacing of
0.197 nm, which correspond to (200) plane. These areas were
formed due to heavy-ion implantation.

In the depth of the coating, from 30 to 130 nm, interplanar
distance decreased to 0.255e0.259 for (111) plane and to 0.226 for
(200) plane. In the depth of 180 nm (zone H) we detected planes
with 0.275e0.278 nm interplanar spaces. This values correspond to
interplanar spacing of HCP crystalline structure ((100) plane) of
transition metals nitrides. In addition, HCP and FCC crystalline
lattices are very close by their inner energy with relatively small
barrier for transition from HCP to FCC, and vice versa. We can
suggest, that, based of HRTEM results, a local area were formed in
the investigated coatings, in which transition from FCC to HCP
lattice by shift mechanism took place. Low concentration of nitro-
gen atoms was the reason of such change (it caused instability of
the crystalline cell), and, as a result, FCC lattice transformed into
more thermodynamically stable HCP lattice.

The investigated (TiHfZrNbVTa)N coatings demonstrate higher
resistivity to irradiation of negative ions Au�, than monocrystalls
and classical polycrystalls [43]. The effectivity of defects recombi-
nation during relaxation processes is higher near cascades due to
close interfaces in nanostructured materials. For the investigated
coatings, grinding of nanograins to sizes 5e8 nm and less increased
the ratio of interfaces (double and triple grain junctions, nanograins
boundaries).

3.3. Mechanical and tribotechnical properties

One of the most important characteristics for the express
analysis of mechanical properties of the coatings is hardness
[44,45]. The measured hardness of the investigated (TiZrHfVNbTa)
N coatings was HV0.2¼ 51 GPa for Series 1, HV0.2¼ 38 GPa for Series
3 and mean value was HV0.2 ¼ 40 GPa for coatings obtained at
Ub ¼ �70 V (series 4e7).
Measurements of nanohardness H and reduced Young's

modulus Er on the different coating's depth were done with
discrete changing (increasing) of the load from 0.05 mN to 10 mN.
The period of load was equal to 3 s, keeping of constant load for
0.5 s, and unload for 3 s. Curves of loading-unloading from contact
depth h of indenter were built using the obtained data. The
maximal penetration depth was 80 nm. Such depth is less, than 10%
of total coating thickness, thus, the influence of substrate on
measured nanohardness is eliminated. The average values of
nanohardness and reduced Young's modulus are presented in
Table 2.

The dependencies of H and Er on contact depth h, for the Series
5 (after implantation) are presented on the Fig. 7. We can see, that
nanohardness is continuously growing to its maximum value
38.3 GPa for the depth 19.3 nm, and then is stable in range
36.3e37.7 GPa, with maximum 39 GPa on the maximum analysis
depth 67.34 nm. It means, that increasing of hardness takes place in
the implanted area, and furthermore.

As it was mentioned before, implantation of heavy negative Au�

ions lead to forming of amorphous-crystalline structure without
preferred orientation of crystallines in the surface and subsurface
layers. Nanograins were grinded, and ratio of interfaces was
significantly increased. In addition, at the initial stages of implanted
ions incorporation into the coating, crystallines with (200) plane
orientation were destroyed, because of critical density of points



Fig. 6. TEM image of cross-section of the (TiHfZrNbVTa)N coating (a). HRTEM image of cross-section, with marked points of analysis (b); magnified images of marked circles D (c), E
(d), H (e); part of the HRTEM image with marked nanograin (f).

Table 2
Results of investigation of mechanical properties of the (TiHfZrNbVTa)N coatings.

Series no. H, GPa Er, GPa H/Er Hmax, GPa Ermax, GPa

1 27.81 265.23 0.11 36.66 285.86
2 34.22 278.14 0.12 39.05 296.85
3 25.19 215.92 0.12 32.83 226.34
4 28.68 267.07 0.11 45.32 313.67

Fig. 7. Dependencies of nanohardness and reduced Young's modulus on contact depth
for the samples from Series 2.
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defects in these planes. In its turn, according to HRTEM data, sig-
nificant grinding of nanograins was observed mostly in the region
of direct ballistic collisions of nanograins and Au� ions. However,
on the depth 20 nm and more, grains with sizes of 5e7 nm were
observed. Thus, we can suppose, that during relaxation processes
(after finishing of the collision phase) the following processes took
place.

Structure, which was destroyed in the area of nanograins, ori-
ented like (200) direction (in other words, this direction differs
from the implanted ions direction), was restored while contacting
with intact areas of the same grains. Epitaxial mechanism was the
reason for the growth of the destroyed grains. As the evidence of
such process, we can refer to the results of XRD analysis. Initially, in
the subsurface of the non-implanted coatings, (200) orientation
dominates for Series 2, but Series 1 demonstrates two predominate
orientations e (111) and (200). However, the relative intensity of
the (200) plane of Series 2 increased after ion implantation, as well
as for Series 1, with the simultaneous decreasing of (111) plane
intensity. Of course, it did not lead to formation of the structure in
that area. But, increased level of stresses due to formation of defects
in the implanted area (the possible contribute to dislocation defects
could be done during relaxation, when grains were restored with
some plane shifting at grains boundaries), and also decreasing of
size of the grains became the reason for an advance of dislocations
in the coating during plastic deformation.Which, in its turn, defines
mechanical hardness of the material.

Thus, we can claim, that implantation of negative Au� ions led to
increasing of nanohardness of the coatings. In addition, increasing



Fig. 8. AFM images of nanoindentor stamp in the coatings, samples from Series 5 (a)
and Series 4 (b); results of mechanical investigations of the samples from Series 6 (c) e
indentation of the Berkovich pyramid under dynamic loading, 2D and 3D images of the
stamp.

Fig. 10. Images of wear tracks in the samples from Series 2 (a), Series 3 (b).
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of plasticity index H/Er � 0.1 to the value of 0.15 was observed in
the implanted series. As it follows from Refs. [45], H/Er ratio defines
tribological characteristics of the coatings. Particularly, it showed
the improved wear resistance of (TiHfZrNbVTa)N coatings.

Fig. 8 aeb shows the AFM images of nanoindentor stamp for
Series 2 and Series 4. As we can see, on the edges of the stamps
there are no cracks for both series, so we can state that fabricated
coatings are plastic enough, it correlates with values of H/Er ratios.
On the Fig. 8c we present the results of mechanical investigations of
Fig. 9. Dependencies of relative hardness dH/H on contact depth.
the Series 6e indentation of the Berkovich pyramid under dynamic
loading as well as 2D and 3D images of the stamp, from which we
can estimate the depth of the indentation and determine the value
of the reduced elasticity modulus. The loading on the indenter
varied in the range 500 mN до 10000 mN. On the graph one can see
dynamic “load-unload” cycles.

The dependencies of relative nanohardness dH/H on indenters'
penetration depth are presented on the Fig. 9. It is clearly seen, that
the highest values of hardness are observed in the implanted layer
(up to 25 nm), and when values of nanohardness are at the stable
level. Increasing of nanohardness is not so significant for non-
implanted coatings, but takes place approximately at the same
depth (up to 20 nm). The Series 4 demonstrates other tendencies,
due to its better mechanical characteristics, in comparison with
other non-implanted series.

Conclusion regarding improvement of wear resistance of
investigated coatings, based on H/E ratio, is also supported by
tribological measurements of coating's wear. On the Fig. 10 (a, b)
wear tracks are presented. On the Fig. 11 we present a plot of
friction coefficient changes during measurements for the coating of
Series 2. We can see that coatings did not lose integrity and did not
wear down to substrate, it confirm its enhanced resistance to wear.
Preliminary scratch-tests on the samples implanted by Au� (dose
was 1017 cm2) showed significant decreasing of the friction coeffi-
cient values from 0.75 to 0.243 in the first 320 s of friction, and then



Fig. 11. Results of tribological tests (friction coefficient) of the (TiZrNbHfVTa)N coating,
sample from the Series 2.
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it increased to 0.78 during the next 1000 s. From Fig. 11 we can see
that friction coefficient significantly increased to the values
0.8e0.92 in the beginning of measurements, and then it was still
not stable. It can be explained by the features of coating's relief.
4. Conclusions

It has been shown, that deposition parameters affected the
element composition, surface morphology and phase structure of
the nitride high-entropy coatings (TiHfZrNbVTa)N. Increasing of
working gas pressure led to resputtering of heavy elements, and
domination of FCC crystalline phase in the coating. Thus, obtained
coatings' structure changes from amorphous (for low gas pressure)
to nanocrystalline (for higher N2 pressure), which directly defines
its properties.

Negative heavy-ion implantation of Au� ions led to selective
sputtering of nitrogen atoms, and it caused increasing of relative
ratio of BCC-phase in the coatings, as it was determined by XRD
analysis. Implanted surface area had polycrystalline structure,
without preferred orientation. Investigation of mechanical prop-
erties showed, that ion implantation led to improving of mechan-
ical properties of the coatings due to structure changes in the
material under ion irradiation. Thus, we can conclude, that inves-
tigated multielement nitride coatings (TiHfZrNbVTa)N demon-
strated irradiation resistance, what makes them perspective in
terms of using in different branches of industry, particularly e

nuclear and chemical.
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